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Abstract. This paper proposes a decomposition-based multi-objective
multi-factorial evolutionary algorithm (MFEA/D-M2M). The MFEA/D-
M2M adopts the M2M approach to decompose multi-objective opti-
mization problems into multiple constrained sub-problems for enhanc-
ing the diversity of population and convergence of sub-regions. An ma-
chine learning model augmented version is also been implemented, which
utilized discriminative models for pre-selecting solutions. Experimental
studies on nine multi-factorial optimization (MFO) problem sets are
conducted. The experimental results demonstrated that MFEA/D-M2M
outperforms the vanilla MFEA on six MFO benchmark problem sets and
achieved comparable results on the other three problem sets with partial
intersection of global optimal.
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1 Introduction

With the increasing amount of incoming data streams, it is very desirable that
the information systems and algorithms are capable of efficient multi-tasking[1].
Evolutionary algorithms (EAs) are population based optimization algorithms
that work on Darwinian principles of natural selection or survival of the fittest[2].
The population based search enables multi-objective evolutionary algorithms
(MOEAs) to achieve simultaneous convergence toward the entire Pareto Front
(PF) for multi-objective optimization problems (MOPs).

Furthermore, recent researches[3–6] show that by exploiting the implicit
parallelism offered by a population, a multi-factorial evolutionary algorithm
(MFEA) can simultaneously and efficiently solve multiple optimization problems
with one single population, where each constitutive problem contributes a unique
factor influencing the evolution. Therefore, evolutionary multi-tasking[7–9] is at-
tracting extensive attention as a new paradigm in the field of optimization and
evolutionary computation.



In order to enhance the diversity of the population, M2M decomposition
approach is augmented with the vanilla MFEA[8]. Furthermore, support vec-
tor machines (SVMs) are utilized as pre-selection models for finding promising
solutions given only their decision variables.

The rest of this paper is organized as follows. Section 2 describes the pre-
liminaries of vanilla MFEA. Section 3 illustrates the mechanism of combining
M2M decomposition with MFEA. Section 4 describes the utilization of SVM
for pre-selection. Experimental results and analysis are provided in Section 5.
Section 6 concludes the paper with a brief discussion of future work.

2 Multi-Factorial Evolutionary Algorithms

Recently, MFEAs[7, 8] have been proposed to solve multiple optimization tasks
with one population. In MFO, each constitutive task is considered to be con-
tributing a unique factor influencing the evolution of the population.

Without loss of generality, consider the situation where K MOPs to be min-
imized simultaneously. Denoting the jth task that has Mj objevtives as Tj , its
Dj dimensional search space as Xj ∈ RDj and its objective function vector as
Fj : Xj → RMj . The jth MOP in MFO paradigm can be defined as (1).

minimize Fj(x) = (fj,1(x), . . . , fj,Mj (x))T

subject to x ∈ Y
(1)

where Y is the unified representation space[5] built on the search spaces Xi, i ∈
{1, 2, . . . ,K} of all constitutive MOPs.

A unified search space can be built so that a) the dimension of the unified
search space D = maxj(Dj), b) the coding and decoding mapping for different
tasks may be different, but all the values of a gene key are mapped into a contin-
uous value in [0, 1] and c) the coded genotypes of tasks are simply overlapped to
form the chromosome. For example, the first Dj genetic key on the chromosome
is the corresponding genotype of task Tj .

Given the above settings, the MO-MFO paradigm is introduced for finding
a set of multi-factorial optimal solutions, which is defined as (2).

{x1, x2, . . . , xj , . . . , xK} = argmin(F1(x),F2(x), . . . ,Fj(x), . . . ,FK(x)) (2)

where xj is a feasible solution in Xj . The composite problem may also be referred
to as a K factorial optimization problem.

In order to compare candidate solutions during the evolution of MFEAs, the
following properties of a individual pi, i ∈ {1, 2, . . . , |P|} in the population P,
are defined:

1. Factorial Rank: The factorial rank rij of pi for task Tj is the index of pi in the
list of population members sorted by non-dominated front (NF) and crowd
distance (CD) from NSGA-II[10] with respect to Tj . To be specific, p2 is
preferred over p1 if any one of the following conditions holds: a) NF2 < NF1

or b) NF2 = NF1 and CD2 > CD1.



2. Skill Factor: The skill factor τi of pi is the one task, amongst all other tasks
in a K factorial environment, with which the individual is associated. If pi is
evaluated for all tasks, then τi = argminj(r

i
j), j ∈ {1, 2, . . . ,K}. Skill factor

indicates which task is most preferred by pi. The solutions in a population
can be grouped into different sub-populations named task groups according
to their skill factors.

3. Scalar Fitness: The scalar fitness ϕi of pi is given by ϕi = 1/riτi . ϕi is the
inverse of the best ranking index of pi amongst all tasks, which indicates the
best fitness of pi. Performance comparisons can be performed in a simplistic
manner with scalar fitness. An individual p1 can be considered to dominate
another individual p2 in multifactorial sense simply if ϕ1 > ϕ2.

The vanilla MFEAs[7, 8] are inspired by the bio-cultural models of multifac-
torial inheritance[11]. Unlike the traditional MOEAs are designed to find a set
of Pareto optimal solutions, MFEA are designed to find the a set of global op-
timal solutions of all constitutive tasks, which means that the trade off between
different tasks is not a concern of MFO. Therefore, MFEA splits the population
into different task groups according to skill factors of solutions. Solutions in a
task group are most suited for the corresponding task. Furthermore, it is possi-
ble that the genetic material in a gene pool of a particular task group might be
useful for another task. Thus, transfer of genetic materials between tasks may
accelerate the overall optimization process.

In the vanilla MFEA, the implicit transfer of genetic material may occur
when two parent solutions with different skill factors are selected for reproduc-
tion. Then they can have a random matting probability (rmp) to perform SBX
crossover[12] and the generated offspring can randomly imitate a skill factor
from either parents. These two mechanisms are named as assortative matting
and selective imitation[7], respectively.

3 M2M Decomposition based MFEA

3.1 M2M Decomposition

The M2M decomposition approach is first introduced in MOEA/D-M2M[13].
This approach decomposes a MOP into multiple constrained multi-objective sub-
problems by dividing the objective space into multiple sub-regions with direction
vectors.

To be more specific, for a MOP with M nonnegative objectives f1, . . . , fm,
K direction vectors λ1, . . . , λK ∈ RM+ was chosen, usually uniformly distributed.
Then the objective space RM+ can be divided into K sub-regions Ω1, . . . , ΩK ,
where Ωk (k = 1, . . . ,K) can be defined as (3).

Ωk = {u ∈ RM+ |(a, λk) ≤ (u, λj), ∀j = 1, . . . ,K} (3)

where (u, λj) is the acute angle between u and λj . In another word, u ∈ Ωk if
and only if λk has the smallest angle to u amongst all the K direction vectors.



Inspired by the division approach above, the jth constitutive MOP in MFO
can be transformed into K constrained multi-objective sub-problems with K
uniformly distributed direction vectors λ1, . . . , λK . The kth sub-problem corre-
sponding to λk is defined as (4)

minimize Fj(x) = (fj,1(x), . . . , f1,Mj
(x))T

subject to Fj(x) ∈ Ωkj
x ∈ Y

(4)

where Y is the aforementioned unified search space. An example of decomposing
a objective space of a two objectives optimization problem is provided in Fig 1.

The pseudocode in Algorithm 1 illustrates the allocation of solutions to
sub-problem groups.

Algorithm 1: Solutions Allocation
Input: task group P , direction vectors λ1, . . . , λK and size of sub-
problem groups S
Output: sub-problem groups P1, . . . , PK

for j ← 1 to K do
Initialize Pj with the solutions in P whose objective vectors are
in Ωj .

if (|Pj | < S) then randomly select S − |Pj | solutions from
P and add them to Pj .
else if (|Pj | > S) then rank the solutions in Pj using the
non-dominated sorting method[10] and remove the S − |Pj |
lowest ranked solutions from Pj .
end if

end for
return P1, . . . , PK

Fig. 1. Direction vectors λ1,λ2 divide the objective space into subregions Ω1, Ω2



3.2 Constructing Matting Pools

By adopting the M2M decomposition, one can simply decompose constitutive
MOPs into different groups of sub-problems, and then solve sub-problems with
different sub-populations by MOEAs. However, this approach is not capable of
utilizing the most important feature of MFEA, namely genetic transfer, because
the individuals in those separated sub-populations or sub-problem groups do not
have a chance to reproduce. Prohibiting communication of genetic material be-
tween different tasks is undesirable as it constrains exploration and the power of
implicit parallelism offered by the entire population[7]. Therefore, a matting pool
combining mechanism is needed to ensure genetic transfer in-between different
task groups.

In this section, a mechanism of randomly combing sub-problem groups from
different task groups to form matting pools is illustrated. To be more specific, K
randomly distributed direction vectors are adopted for dividing objective spaces
of both constitutive tasks. Note that direction vectors in these two objective
spaces might not be the same due to the dimension of spaces might be different.
Then K matting pools are generated by randomly combining two sub-problem
groups with each sub-problem group randomly picked from different tasks.

4 Pre-Selection

When function evaluation is computationally expensive, one may want to spend
evaluations wisely use all evaluations on solutions that are promising, which
means the solutions have a fair chance of being selected into the next generation.

Inspired by MOEA/D-SVM[14], the support vector machine is adopted as
pre-selection model for MFEA/D-M2M. As illustrated in Fig 2, pre-selection is
a procedure that selects unevaluated solutions given their decision variables only.
Thus it is possible to select the promising ones for further function evaluation,
and discard the rest.

Reproduction Pre-selection Evaluation

Selection

Fig. 2. Pre-selection before actual function evaluation

In order to obtain SVM models that can predict whether or not a solution is
promising, the solution set containing solutions of the last generation and their
offspring solutions, namely the union set of last generation, are used for training
SVM.

Specifically, the decision variable vectors are regarded as feature vectors for
representing solutions. and then the solutions in union population are labeled



as promising if it survives the last natural selection and labeled as unpromising
otherwise. To be more specific, after natural selection takes place, the solutions
in current population will be labeled as promising, and solutions in the union set
of last generation but not in the current population are labeled as unpromising.

The pseudocode in Algorithm 2 summarizes the MFEA/D-M2M-SVM as
follows.

Algorithm 2: MFEA/D-M2M-SVM
Input:

MOPs, A stopping criterion,
K unit direction vectors λ1, . . . , λK , S the size of sub-problem group,
Genetic operators and their associated parameters.

Output: a set of multi-factorial optimal solutions.

Geneate |P | individuals in Y to form initial population P .
for every pi ∈ P do Assign skill factor τi and evaluate pi for task
τi only.
end for
Compute scalar fitness ϕi for every pi based on NF and CD
return P1, . . . , PK
while(stopping condition is not satisfied) do

Decompose P into subproblem groups with λ1, . . . , λK .→ Refer
Algorithm 1.
for every sub-problem group of task one PT1

i do Randomly
pick a sub-problem group from task two PT2

j to from a matting
pool MPi.
for every matting pool population MPi do
while (offspring number ≤ matting pool size)

Pick two parent solutions with binary tournament selection.
Generate two offspring solutions with assortative matting.
if (pre-selection == true) then

Use trained SVM model for predicting offsprings, SVM-
predict(c).
while (SVM-predict(c) == unpromising) do Regenerate
offspring.
Determine skill factor τc and evaluate c with task τc only.

end if
end for
Combine current population and offsprings into union.
Perform non-dominated selection on union population.
Select |P | fittest solutions in union to form the current popula-
tion.
if (trainSVM == true) Label solutions in last union population
and train SVM model with them.

return current population P



5 Experimental Studies

5.1 Benchmark Problems

The Multi-Objective Multi-Factorial Optimization (MO-MFO) benchmark prob-
lem sets[1] are adopted in the experimental studies, which are the same bench-
marks used in CEC2017 MFO competition. All the details of these benchmark
problem sets can be found in [1, 15].

The MO-MFO benchmark contains nine different problem sets. Each problem
set contains two constitutive tasks, and each task is a two- or three-objective
minimization problem. For more detailed information, readers are referred to [1,
15].

The degree of intersection of the global optima: Compete Intersection (CI):
the global optimal of two constitutive tasks are identical in the unified search
space with respect to all variables. Partial Intersection (PI): the global optimal
of the two tasks are identical in the unified search space with respect to a subset
of variables only, and are different with respect to the remaining variables. No
Intersection (NI): the global optimal of the two tasks are different with respect
to all variables.

The similarity of the fitness landscape: High Similarity (HS): problem sets
with Spearman’s rank correlation coefficient[15] Rs ≥ 0.8. Medium Similarity
(MS): problem sets with 0.8 > Rs > 0.2. Low Similarity (LS): problem sets with
Rs ≤ 0.2.

Therefore, the nine problem sets in MFO benchmark, are named by their
characteristic as follows: CIHS, CIMS, CILS, PIHS, PIMS, PILS, NIHS, NIMS,
NILS.

5.2 Experimental Settings

In order to demonstrate the effectiveness of MFEA/D-M2M, several experiments
are conducted with comparison of the vanilla MFEA. The experimental settings
are as follows:

1. Population size: 200. Number of direction vectors for each task: 10. Size of
each sub-problem population: 10.

2. Random mating probability: 0.9.
3. Deferential evolution (DE) crossover probability (CR): 0.9. Deferential evo-

lution crossover factor (F): 0.9.
4. Simulated binary crossover (SBX) probability: 0.9. Distribution index for

SBX: 20.
5. Polynomial mutation probability: 1/D (D is the dimensionality of the unified

representation space). Distribution index for mutation: 20.
6. The number of function evaluations at every generation: 200. Maximum

function evaluation: 200,000.

The deferential evolution crossover is used for problem sets with complete or
no intersection of global optimal, and the simulated binary crossover is used for
problem sets with partial intersection of global optimal.



5.3 Performance Metric

To compare the performance of the algorithms, a popular metric - inverted gen-
eration distance (IGD)[16] is adopted. The definitions of IGD is given by (5).

IGD(A,P ∗) =
1

|P |

√ ∑
x∈P∗

(min
y∈A

d(x,y))2 (5)

where A is a set of normalized non-dominated objective vectors that are obtained
for a task Ti by the algorithm, P ∗ is the set of uniformly distributed normalized
objective vectors over the PF of Ti, and d(x,y) is the Euclidean distance between
x and y in the normalized objective space.

If |P ∗| is large enough to represent the PF, the IGD(A,P ∗) can measure both
convergence and diversity of A to an extent.

To illustrate the convergence speed of an algorithm, the convergence curve
are plotted to describe the trend of IGD values over the number of generations.

5.4 Experimental Results and Discussions

Table 1 summarized the performances of the vanilla MFEA, MFEA/D-M2M
and MFEA/D-M2M-SVM on nine benchmark problem sets, in terms of average
IGD values over 30 independent runs.

In Table 1, both MFEA/D-M2M and MFEA/D-M2M-SVM have achieve
better performances on six problem sets, which are problem sets with complete
or no intersection of global optimal. On the other problem sets with partial
intersection, the proposed algorithms have achieved comparable result than the
vanilla MFEA.

Table 2 shows the h-value (h) and p-value (p) from the T-test of IGD values
among MFEA and MFEA/D-M2M-SVM. The significancy level of the T-test is
set as 0.05.

On problem sets with complete intersection or no intersection of global op-
timal, such as in Fig 3 and Fig 4, MFEA/D-M2M and MFEA/D-M2M-SVM
achieve better IGD convergence speed and average IGD values than the vanilla
MFEA at the end of evolution. Especially in Fig 3, MFEA/D-M2M-SVM out-
performs both MFEA/D-M2M and MFEA in terms of both average IGD value
and convergence speed.



Table 1. Average IGD values of MFEA, MFEA/D-M2M and MFEA/D-M2M-SVM

ProblemSet-Task MFEA MFEA/D-M2M MFEA/D-M2M-SVM

CIHS-T1 4.2878E-04 1.8083E-04 1.7815E-04
CIHS-T2 2.7627E-03 4.9795E-04 5.1315E-04

CIMS-T1 4.9917E-02 1.9344E-04 1.8137E-04
CIMS-T2 8.4888E-03 2.5233E-04 1.9776E-04

CILS-T1 2.6345E-04 2.5940E-04 2.5197E-04
CILS-T2 1.8532E-04 1.8741E-04 1.8275E-04

PIHS-T1 9.9586E-04 1.0479E-03 9.8242E-04
PIHS-T2 3.5382E-02 6.6400E-02 4.5432E-02

PIMS-T1 2.9505E-03 3.4824E-03 4.0440E-03
PIMS-T2 9.7286E+00 1.4166E+01 1.3686E+01

PILS-T1 3.3238E-04 3.6724E-04 3.5442E-04
PILS-T2 1.0814E-02 1.0777E-02 1.1155E-02

NIHS-T1 1.5552E+00 1.4929E+00 1.4925E+00
NIHS-T2 4.9591E-04 2.4923E-04 2.4837E-04

NIMS-T1 3.3532E-01 1.5402E-01 1.5517E-01
NIMS-T2 3.4444E-02 6.9613E-04 3.0415E-04

NILS-T1 8.3985E-04 8.9249E-04 8.6783E-04
NILS-T2 6.4326E-01 6.4782E-01 6.4183E-01

Table 2. T-test values of IGD among MFEA and MFEA/D-M2M-SVM

h p h p h p

CIHS-T1 1 1.1633E-13 PIHS-T1 0 7.0901E-01 NIHS-T1 1 8.3695E-16
CIHS-T2 1 9.9410E-21 PIHS-T2 1 4.8330E-04 NIHS-T2 1 9.3051E-14

CIMS-T1 1 2.9975E-04 PIMS-T1 0 7.8677E-02 NIMS-T1 1 1.5667E-03
CIMS-T2 1 2.8867E-03 PIMS-T2 1 3.5863E-05 NIMS-T2 1 9.0970E-03

CILS-T1 0 1.3100E-01 PILS-T1 0 2.8317E-01 NILS-T1 0 1.2037E-01
CILS-T2 1 1.0446E-02 PILS-T2 0 9.4582E-01 NILS-T2 1 2.0513E-21
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Fig. 3. Convergence curves on CIMS
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Fig. 4. Convergence curves on NIMS

6 Conclusions

This paper proposes a M2M decomposition based multi-factorial evolutionary al-
gorithm for solving CEC2017 MFO Benchmark problems. The MFEA/D-M2M
adopts the M2M approach to decompose multi-objective optimization problems
into multiple constrained sub-problems to enhance the diversity of population
and convergence of sub-regions. A SVM augmented version is also implemented
to improve its performance. The experimental results demonstrate that the pro-
posed algorithms have achieved better performance on both problem sets with
complete intersection and no intersection of global optimal, and comparable re-
sults on the other three problem sets. The future work includes studying the
decomposition approach in MFEAs and solving several real-world optimization
problems to further demonstrate the effectiveness of MFEA/D-M2M.
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